Model space localization in serial ensemble filters

Anna Shlyaeva1,2, Jeff Whitaker1 and Chris Snyder3

1NOAA/Earth System Research Lab, Boulder, Colorado, USA
2Colorado University/CIRES, Boulder, Colorado, USA
3NCAR, Boulder, Colorado, USA
Localization: model-space vs obs-space

Model-space localization

Based on distances between state variables

- EnVar: using square root of $L \circ B$
- Modulated ensemble approach in ensemble filters:
 Background ensemble is expanded to approximate square root of $L \circ B$

Obs-space localization

Based on distances between state variables and observations and/or distances between observations

- Serial ensemble filters: localization of BH^T:
 $C_1 \circ (BH^T)$ and $C_2 \circ (HBH^T)$
- LETKF-type filters:
 Localization through increasing obs error variances based on the distance between the obs and the state variable being updated
Why model-space localization?

- Location of an observation may not be well defined (e.g. satellite radiances).
- Correlations between model variables are often higher than correlations between model and observed variables.
- Multiscale localization methods are more natural to implement in model space.
- Cross-channel observation error correlations are easier to implement with model-space localization.

Background errors when assimilating radiances only in EnVar and EnSRF:
Serial ensemble filter

In a serial filter observations are processed one at a time. Update from the first $k - 1$ observations is used as the background for assimilating the k-th observation.

The i-th state variable update with k-th observation:

$$x_i^{(k)} = x_i^{(k-1)} + K_i^{(k)}(y_k - h_k(x^{(k-1)}))$$

$x^{(k-1)}$ is the state after update with $k - 1$ observations,

y_k is the k-th observation with observation error variance σ_k^2, and $K_i^{(k)}$ is a scalar Kalman gain.
Localization in serial filters

Observation-space localization

\[K^{(k)}_i = \frac{C_{ik}(XX^T h_k^T)_i}{h_k XX^T h_k^T + \sigma_k^2} \]

\(C \) is the \(nx \times ny \) background-obs error covariance localization matrix.

\(X = (x - \bar{x})/\sqrt{nens} - 1 \) are the normalized ensemble perturbations,
\(h_k \) is the \(k \)-th row of the forward operator Jacobian \(H \).
Localization in serial filters

Model-space localization

\[
K_i^{(k)} = \frac{(L \circ XX^T)_{i} h_k^T}{h_k (L \circ XX^T) h_k^T + \sigma_k^2}
\]

* is the \(nx \times nx\) background error covariance localization matrix

Observation-space localization

\[
K_i^{(k)} = \frac{C_{ik} (XX^T h_k^T)_{i}}{h_k XX^T h_k^T + \sigma_k^2}
\]

* is the \(nx \times ny\) background-obs error covariance localization matrix

\(X = (x - \bar{x})/\sqrt{nens} - 1\) are the normalized ensemble perturbations,

\(h_k\) is the \(k\)-th row of the forward operator Jacobian \(H\).
Localization in serial filters

Model-space localization

\[K_i^{(k)} = \frac{(L \circ XX^T)_i h_k^T}{h_k(L \circ XX^T)h_k^T + \sigma_k^2} \]

\(L \) is the \(nx \times nx \) background error covariance localization matrix

- Need to have linearization of the observation operator.
- Additional cost (vs obs-space loc):
 - Factor of \(\text{nnz} \) for each updated y-x pair (\(\text{nnz} = \text{number of non-zero elements in linearized obs operator} \));
 - in practice less, depending on how tight localization is.
Implementation

• Implemented for NOAA ensemble square-root filter
• Only vertical model-space localization (important for radiances)
• Single obs experiments (AMSUA channel 7):
DA cycling experiments

• NOAA Global Forecast System (beta-version), analysis at ~0.7° resolution
• Compare EnSRF-obsloc, EnSRF-modloc, LETKF-modens (Jeff Whitaker and Lili Lei) & EnVar

Experimental design:
• Radiance-only assimilation (to amplify effect of vertical localization)
• EnVar (for the purpose of fair comparison of localizations):
 • 100% ensemble covariances
 • No outer loops (no relinearization of H)
 • Additional balance constraints off
• All experiments used operational bias correction coefficients
DA cycling results (6-h forecast vs in-situ obs)

Vector Wind (left), and Temperature (right) O-F (1 Jan 2016-20 Jan 2016)
DA cycling results (6-h forecast vs in-situ obs)

The differences between obs-space and model-space localization are smaller if:
- localization lengthscale is increased
- In-situ observations are also included

EnVar results are better if outer loops are used or additional balance constraint is on
Computational cost of model-space localization

In the experiments shown, EnSRF with model-space localization was ~8 times more expensive than with obs-space localization (when using only radiances).

Possible optimizations:

• Additional computations are thread-parallelizable: optimize threads per node.
• We expect that for the system that distributes model points and observations in local area the data transfer overhead should be less than in our system (with random distribution).
Conclusions

- Model-space localization can be applied in serial ensemble filters directly, if the linearized observation operator is available.
- The additional computational cost depends on how sparse of the observation operator Jacobian is.
- The results of radiance-only assimilation with global NOAA atmospheric system show the benefit of model-space over observation-space localization.