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Track forecasts have improved drastically over past 25 years:  a 3 
day forecast today is as accurate as a 1 day forecast was in 1989.
Intensity forecast accuracy has remained generally stagnant over 
that same period of time, except for the last few years.

What limits the predictability of tropical cyclone intensity?2

National Hurricane Center Official TC Forecast Errors



How to make better input to the hurricane models?
High-resolution observations from Hurricane Hunters and UAVs: Provide 
crucial airborne inflight measurements, dropsondes, Doppler Radar Winds, …
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Houtekamer & Zhang (December 2016, MWR)      #1 2017 most-read (>2000 downloads)



PSU WRF-EnKF Hurricane Analysis & Prediction System
with advanced assimilation of airborne Doppler Radar Vr

Evaluated for all 100+ P3 TDR missions during 2008-2012

The TDR EnKF methodology is now adopted by NOAA for the operational HWRF model.
(F. Zhang and Y. Weng 2015, BAMS)

PSU WRF-EnKF Hurricane Intensity error (knots)



WRF-EnKF Performance w/ versus w/o Aircraft OBS
for HFIP/NHC selected RDITT cases w/o TDR during 2008-2012

WRF-EnKF: 3 domains (27, 9 , 3km), 60-member ensemble, PSU TC flux scheme

(Weng and Zhang, 2016 JMSJ)
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Next Frontier: Geostationary Satellite GOES-R
from NASA to NOAA



State-of-the-Science: Importance of All-sky Radiances from ECMWF Operations 
FSO of satellite radiances, August 2016 (100% = full operational observing system)

Microwave 
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20.1%

Infrared T
16.5%

Infrared WV
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Amount of information 
coming from 
humidity/cloud/precipitation 
is equivalent to what’s 
coming from T sounding

An SSMIS (combining 
imaging and humidity 
sounding channels) is 
nearly equivalent to the 
best of the 
temperature-sounding 
AMSU-As

There is great potential to get 
more from the infrared water 
vapour channels by going to 
all-sky

Courtesy of Alan Geer at ECMWF



Imagers: Cloudy 
and precipitating 
scenes give 
more FSO than 
clear-sky scenes

Sounders: Cloudy 
and precipitating 
scenes have same 
per-obs FSO as 
clear-sky scenes

But don’t forget all-sky 
gives a more optimal 
assimilation of “clear” 
scenes (going to all-sky 
at least doubled the 
forecast impact of MHS)

State-of-the-Science: Importance of Cloudy and Precipitating Scenes
FSO of satellite radiances, August 2016 (100% = 9 all-sky satellite radiance measurements)

Courtesy of Alan Geer at ECMWF



Mechanism: 4D-Var can infer dynamical initial conditions from 
observed WV, cloud and precipitation

State-of-the-Science: Importance of Cloudy and Precipitating Scenes

High FSO => real improvements in medium-range synoptic forecasts

Courtesy of Alan Geer at ECMWF



New Generation of Geostationary IR Satellites

Launch Dates: 
- Oct 2014 (Himawari-8, Japan)

- Nov 2016 (Himawari-9, Japan)

- Nov 2016 (GOES-R/16, USA)

- Dec 2016 (FY-4, China)

- Mar 2018 (GOES-S/17, USA)

Resolution: 10-15 minutes; 2-4 km

Water Vapor Channels
Band-8 6.19µm
Band-9 6.95µm

Band-10 7.34µm

Weighting functions
on WV channels 
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EnKF Performance assimilating simulated 
radiance 

Verifying truth EnKF analysis
with radiance & 
minimum SLP

EnKF analysis
with minimum 

SLP only

Truth versus EnKF-analyzed Infrared Radiance 
of GOES-R ABI ch14 (11.2 µm)

(Zhang, Minamide & Clothiaux, 2016 GRL)



Adaptive Observation Error Inflation (AOEI)

In updating SLP,  

With AOEI, 
AOEI

suppresses erroneous analysis increments,
relieves the issues of representativeness & sampling,

& contributes to maintaining balance.

AOEI: inflating observation error variance

Problem: erroneous analysis increments
If Model (clear / cloudy) ≠ Observation (cloudy / clear)

(Minamide & Zhang, MWR, 2017)



Adaptive Observation Error Inflation (AOEI)

Contour: Background error

Color: ensemble spread

GOES-13 Observation Background Error / Spread

(K)

Color: observed brightness temperature

Not 
inflated

Not 
inflated inflated

inflated

(Minamide & Zhang, 2017, MWR)



Deterministic Forecasts for Hurricane Joaquin (2015)�w/ & w/o Radiance
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Track MSLPmin 10m-Vmax

Deterministic forecasts from EnKF analysis every 6 hours

Averaged absolute error reference to Best Track

Convection-permitting EnKF Assimilation of All-sky Radiance: GOES-13

(Lei, Weng, Meng and Zhang, in internal review) 



Hurricane Harvey (2017): first GOES-R full disk



Assimilating All-sky GOES-R Radiances: Harvey (2017)

Independent observations vs. EnKF analysis of channel 10

PSU WRF-EnKF, Dx=3km, ensemble size=60, channel 8, every 1h
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(Minamide & Zhang, MWR, 2018 in review)



EnKF Performance on deterministic forecast
Minimum SLP Max 10-m wind speed

- All deterministic forecast accurately capture the RI of Harvey, 
which is largely improved from noDA forecast.

Color-lines: 
APSU deterministic 
forecast

(Masashi Minamide’s Ph.D. Dissertation research) 



PSUWRF-EnKFHarvey Forecast with GOES-RAssimilation
in comparison with WRF(NoDA), operational HWRF & best track

Research Supported by ONR, NASA, NOAA and NSF



GOES-R Assimilation for Tornadic Storms

(see Y. Zhang’s talk later this session)



Beyond simple data thinning, channel selection and superobbing
Channel-synthesizing for reducing uncertainties in satellite radiative transfer modeling

Lu and Zhang (2018 GRL)



channel-synthesizing for reducing uncertainties in satellite  radiative transfer modeling

Lu and Zhang (2018 GRL)



channel-synthesizing for reducing uncertainties in satellite  radiative transfer modeling

Lu and Zhang (2018 GRL)



channel-synthesizing for reducing uncertainties in satellite  radiative transfer modeling

Lu and Zhang (2018 GRL)



Principal component based RTM and DA for 
hyper-spectral instruments: AIRS/IASI

Ongoing work by Yinghui Lu



Singular values corresponding to the 
PC modes (singular vectors of SVD) 



“Climatological” correlations of leading PC modes to temperature and Moisture



Atm, sfc, ……

TB

Mean TB,
PC modes

Atm, sfc, ……

RTM

SVD

TB

PC scores

Ensemble 
coefficients

Climatological data Ensemble modeling

Rad. Trans. 
Model

Work Plan: Principal component based RTM 
and DA for hyper-spectral instruments







“ensemble” correlations



Towards Assimilation of Cloudy MW Radiances
Modifying CRTM for microphysics consistency

• “Distribution-Specific,” CRTM-DS:
• New cloud scattering property lookup tables
• Construct with MP scheme particle properties and size 

distributions
• Very high resolution (1 µm radius)

• Single particles modeled as soft spheres
• These MP schemes specify hydrometeors as spheres
• Maxwell-Garnett mixing formula for ice dielectric constants
• Liquid dielectric constants from Tuner et al. (2016)

Sieron, Clothiaux, Zhang, Otkin and Lu (2017 JGR)
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CRTM Simulated: initial condition vs. physics uncertainty
WSM6
19.35H
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CRTM-DS WSM6 Assimilating 19.35 GHz

Water Path of 
All Precip

U wind

V wind



Towards Assimilation of Cloudy MW Radiances
Further inclusion of non-spherical snow 
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(Sieron, Zhang, et al. 2018 JAMES)
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Assimilating All-sky Satellite Radiances: Harvey (2017)

183.3�7 GHz

WRF/CRTM simulated MW radiance, 1st cycle (IR & MW)
Analysis (12 UTC) vs. 12 UTC GPM observations

Ongoing Dissertation Research by Scott Sieron



Obs
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CRTM-DS Sector Snowflakes

Assimilating All-sky Satellite Radiances: Harvey (2017)

Ongoing Dissertation Research by Scott Sieron

183.3�7 GHz
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Assimilating All-sky Satellite Radiances: Harvey (2017)
WRF/CRTM simulated MW radiance, 2nd cycle (IR & MW)
Analysis (13 UTC) vs. 13 UTC SSMIS observations

CRTM-DS Sector Snowflakes

183.3�7 GHz
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Assimilating All-sky Satellite Radiances: Harvey (2017)
WRF/CRTM simulated MW radiance, 3rd cycle (IR only)
Background (14 UTC) vs. 13 UTC SSMIS observations

CRTM-DS Sector Snowflakes

183.3�7 GHz
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- Convection-permitting EnKF assimilation of GOES all-sky IR 

radiance show great promises for hurricane analysis & prediction 

- Assimilation of cloudy microwave radiances is also promising but 

more challenging with key issues such as:

o how to maintain consistency between model microphysics, 

CRTM and the wild nature of hydrometer distribution and shape

o how to have microphysics distribution-specific radiative transfer 

for nonspherical particles given soft-sphere model microphysics

o how to more effectively assimilate large volumes of data

o how to deal with strong nonlinearity and non-Gaussianity

- Time is now to holistically integrate all-sky IR/MW radiances

Concluding Remarks


