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Abstract

Determining the size and composition of core-shell particles using morphology-dependent

resonances (MDRs) is a computationally intensive problem due to the large parameter space

that needs to be searched during the fitting process. Very often it is not even practical to

consider a reasonable range of physical parameters due to time constraints, leading to restrictive

assumptions concerning the system being studied. The lengthy computational time is so limiting

that there has, to date, been no systematic study of fitting measured MDRs for core-shell

particles. In this work, we address the issue of fitting speed by developing an algorithm that

(i) reduces the multi-dimensional grid search to a one-dimensional search using a least squares

method and (ii) implements a new method for calculating MDRs that is much faster than

previous methods. With the program presented here, we are able to provide a comprehensive

analysis of best-fits for core-shell MDRs across a large range of physically relevant scenarios

using noise levels typical for conventional spectroscopic experiments. For many cases it is found

that excellent fits can be quickly determined. However, there are also some surprising situations

where accurate best-fits are not possible (e.g. if only one mode order is present in the measured

MDR set).

OCIS Codes: (140.4780) Optical resonators; (260.2030) Dispersion; (290.3030) Index mea-

surements; (290.4020) Mie theory
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1 Introduction

Morphology-dependent resonances (MDRs) are often observed in the optical spectra of sin-

gle, micron-sized spherical particles. Sharp MDRs occur when a dielectric particle behaves as

a high-quality factor cavity that supports resonant electromagnetic modes at optical frequen-

cies.1–3 These sharp MDRs are also referred to as whispering gallery modes and can be seen to

have strong internal electromagnetic fields at the interior interface of the particle, which can be

attributed to total internal reflection of the incident light inside the particle.3–5 Spectra con-

taining MDRs can be collected using both elastic and inelastic light scattering techniques such

as broadband light scattering,6–12 cavity-enhanced fluorescence spectroscopy,13–18 and cavity-

enhanced Raman spectroscopy.7,12,19–22

For spherical particles with a uniform composition, measured MDR positions can quickly

be fitted using a resonance condition from Mie theory, allowing for the simultaneous retrieval

of particle size and refractive index.16,23,24 Beyond homogeneous spheres, using observed MDRs

to accurately characterize particles presents an enormous challenge. First, it will be inadequate

to describe the object using only a radius and a single wavelength-dependent refractive index.

This will lead to an increase in the dimensions of the physical parameter space that needs

to be searched. Second, for an object with an arbitrary shape and refractive index profile, a

characteristic equation for the MDR positions will likely not exist, leading to much more labo-

rious calculations than are necessary with MDRs determined using Mie theory. For instance,

light scattering for a spherical particle with a non-uniform refractive profile can be calculated

by approximating the refractive index profile using a multilayered sphere.25,26 Determining the

locations of MDRs from such calculations, while possible,27,28 is tedious and time consuming.
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Fig. 1 shows a particle that consists of a spherical core with a concentric spherical shell.

It can be seen that there will be twice as many parameters to fit when compared to a homo-

geneous sphere (assuming all refractive indices have the same number of terms). A resonance

condition for transverse electric (TE) and transverse magnetic (TM) modes can be found using

the denominators of the scattering coefficients that have been given for the solution to the

problem of the scattering of a plane wave for a sphere with a concentric spherical shell.29 The

behavior of MDRs for this type of core-shell particle have been investigated previously.27,30–32

Resonances for both spherical and core-shell particles are found by solving a transcendental

equation. For the homogeneous sphere there is an approximate explicit formula for the MDR

positions33 and this is tremendously useful as an initial guess in solving the exact resonance

condition.23,24 While approximate explicit formulas do exist for the core-shell particle, they

are only valid under fairly restrictive conditions (thin shell or small refractive index difference

between the core and shell).34,35 The core-shell equation can still be reliably solved for a given

mode assignment, however, it can be a very computationally intensive task.

The sensitivity of MDRs to both changes in size and refractive index of the core and shell can

potentially allow a core-shell particle to be studied with high precision and is the primary moti-

vator for their applied use. Utilizing core-shell MDRs has applications that include probing thin

coatings on droplets,36,37 investigating liquid-liquid phase separation in aerosol particles,38–41

and tracking penetrant uptake in microspheres.27,28,35 Liquid-liquid phase separation, in par-

ticular, has received considerable attention from the atmospheric science community as it has

been proposed that the lower surface tension of a phase separated particle when compared to

a homogeneously mixed particle will result in an enhancement of cloud condensation nuclei

activity.42–44
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The aim of this work is two-fold: (i) Develop a fast yet robust fitting algorithm that can

be used to characterize core-shell particles using measured MDR positions, and (ii) Study the

accuracy of the best-fits. The first objective is met by formulating and solving the fitting prob-

lem using the method of least squares (Section 2). Unlike previously implemented grid search

based algorithms, the least squares approach developed here is much faster as, once the mode

assignment is known, the N parameters of best-fit can be found by solving N linear equations

as oppose to performing a grid search across a N -dimensional hypersurface (although for the

core-shell particle a one-dimensional grid search is still necessary). Further speed improvements

are presented in Section 3, where a new method for calculating core-shell MDRs is demonstrated

to be much faster than previous methods in many situations. In Section 4, we evaluate the

accuracy of the fitting algorithm using a wide range of synthetic data sets. This analysis reveals

that excellent best-fits are possible for many physically plausible cases but that there are also

unexpected issues with certain MDR sets.
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2 Formulation and solution to the least squares problem

Given a set of J resonance positions measured at the wavenumbers νj, our objective is to

determine a set of calculated resonances, νcj , that minimizes the sum of squared differences:

S =
J∑

j=1

(
νj − νcj

)2
. (1)

For a particle consisting of a spherical core with a concentric spherical shell (a core-shell parti-

cle), the parameters that are used to calculate each νcj are the wavenumber-dependent refractive

index of the core, m1j, the wavenumber-dependent refractive index of the shell, m2j, the core

radius, a1, and the shell radius a2 (Fig. 1). The refractive indices of the core and shell are

relative to the medium that surrounds the particle.

Eq. 1 can be rewritten in terms of the outer radius and the resonant size parameters of the

shell, x2j, using the relationship x2j = 2πa2ν
c
j . This yields

S =
J∑

j=1

(
νj −

x2j

2πa2

)2

. (2)

Each jth resonant size parameter depends on m1j, m2j, and the ratio between the radius

of the core and the radius of the shell, r = a1/a2. If r is fixed at r0, the functions x2j can be

expanded using a first-order Taylor series around the points m0,1j and m0,2j as

x2j(m1j,m2j, r0) = x2j(m0,1j,m0,2j, r0) + (m1j −m0,1j)
∂x2j

∂m1j

+ (m2j −m0,2j)
∂x2j

∂m2j

. (3)

For brevity Eq. 3 will be written as

x2j(m1j,m2j, r0) = pjm1j + qjm2j + bj, (4)

where pj, qj, and bj collect like terms from Eq. 3.
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In Eq. 3, the resonant size parameter was not expanded as function of r. The reason for

this is that resonant size parameter is not well described as a linear function of r. This is

illustrated in Fig. 2 for second order modes where m2 > m1 (Fig. 2a) and m1 > m2 (Fig. 2d).

In those two examples, it can be seen that the resonant size parameter is not linear with r. In

contrast, when r is fixed and either m1 is varied (Fig. 2b and e) or m2 is varied (Fig. 2c and

f) the plotted resonant size parameters are approximately linear across fairly large ranges of

both m1 and m2. Therefore, r will not be a parameter of best-fit in the least squares problem

considered in this section. Instead, in the algorithm that will be subsequently developed, S will

be tabulated as a function of r0 and the value of r0 that yields a minimum S will be taken as

the r of best-fit.

Next, a parameterization for the refractive index is introduced. Here we choose to express

the wavenumber-dependent refractive index of both the core (s = 1) or shell (s = 2) using the

form of the Cauchy equation with Ks + 1 terms45

msj =
Ks∑
k=0

αskν
2k
j , (5)

where αsk are the fitting parameters for the refractive index functions. With the definition of

the refractive index from Eq. 5, the parameters of best-fit will be the set of a2, α10, α11, . . . ,

α1K1 , α20, α21, . . . , α2K2 , and r that yield the smallest value of S in Eq. 1.

In Appendix A, a set of equations are constructed by inserting Eqs. 4 and 5 into Eq. 2 and

setting the partial derivative of S with respect to each parameter to zero. The derived set of

linear simultaneous equations for the error minimization problem can be written as

A · v = d, (6)
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where

v = (a2, α10, α11, . . . , α1K1 , α20, α21, . . . , α2K2)
ᵀ ,

d = −

(∑
j

b2
j ,
∑
j

bjpj,
∑
j

bjpjν
2
j , . . . ,

∑
j

bjpjν
2K1
j ,

∑
j

bjqj,
∑
j

bjqjν
2
j , . . . ,

∑
j

bjqjν
2K2
j

)ᵀ

,

A =



−2π
∑
νjbj

∑
pjbj

∑
pjbjν

2
j · · ·

∑
pjbjν

2K1
j

∑
qjbj

∑
qjbjν

2
j · · ·

∑
qjbjν

2K2
j

−2π
∑
νjpj

∑
p2j

∑
p2jν

2
j · · ·

∑
p2jν

2K1
j

∑
qjpj

∑
qjpjν

2
j · · ·

∑
qjpjν

2K2
j

−2π
∑
ν3j pj

∑
p2jν

2
j

∑
p2jν

4
j · · ·

∑
p2jν

2K1+2
j

∑
qjpjν

2
j

∑
qjpjν

4
j · · ·

∑
qjpjν

2K2+2
j

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

−2π
∑
ν
2K1+1
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2K1
j

∑
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2K1+2
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qjpjν
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∑
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∑
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
.

Solving Eq. 6 for v yields the parameters of best-fit. The necessary background for calculating

pj, qj, and bj is covered in the subsequent section along with Appendix B. Then, in Appendix

C, it is shown how bj, pj, and qj can be determined through the application of the chain rule

to the resonance condition.

3 The core-shell resonance condition and its solution

The resonance condition for TE and TM modes for a spherical core with a concentric

spherical shell is known to be27

jn(m2z1) (1 +m1z1j
′
n(m1z1)/jn(m1z1)) − w (jn(m2z1) +m2z1j

′
n(m2z1))

yn(m2z1) (1 +m1z1j′n(m1z1)/jn(m1z1)) − w (yn(m2z1) +m2z1y′n(m2z1))
=

jn(m2z2)
(

1 + z2h
(1)′
n (z2)/h

(1)
n (z2)

)
− v (jn(m2z2) +m2z2j

′
n(m2z2))

yn(m2z2)
(

1 + z2h
(1)′
n (z2)/h

(1)
n (z2)

)
− v (yn(m2z2) +m2z2y′n(m2z2))

, (7)

where z1 and z2 are a pair of complex resonant size parameters, whose respective real parts, x1

and x2, are related to ratio, r, through r = x1/x2. For TE polarization, the terms v and w are

v = 1 and w = 1 and for TM polarization, v = 1/m2
2 and w = m2

1/m
2
2. The functions jn and yn

are the spherical Bessel functions of the first and second kind, respectively, and h
(1)
n = jn + iyn
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is the spherical Hankel function of the first kind. The derivatives, denoted by primes, are with

respect to the arguments of their associated functions.

Solutions to Eq. 7 can be calculated numerically using a root-solving algorithm. The

iterative Newton-Raphson method is one of the most well-known root-finding techniques and

is used here. Its specific implementation for our case requires the evaluation of the resonance

equation as well as its partial derivative with respect to both z1 and z2. This operation is not

done directly with Eq. 7, however, instead we first re-express Eq. 7 as

ψn(m2z1)
[
m1

m2
Ψn(m1z1) − wΨn(m2z1)

]
χn(m2z1)

[
m1

m2
Ψn(m1z1) − wXn(m2z1)

] =
ψn(m2z2)

[
1
m2

Ξn(z2) − vΨn(m2z2)
]

χn(m2z2)
[

1
m2

Ξn(z2) − vXn(m2z2)
] , (8)

where ψn(ρ) = ρjn(ρ), χn(ρ) = −ρyn(ρ), and ξn(ρ) = ρh
(1)
n (ρ) are known as the Riccati-Bessel

functions46 and Ψn, Xn, and Ξn are their associated logarithmic derivatives

Ψn(ρ) =
ψ′n(ρ)

ψn(ρ)
= −n

ρ
+
jn−1(ρ)

jn(ρ)
, (9)

Xn(ρ) =
χ′n(ρ)

χn(ρ)
= −n

ρ
+
yn−1(ρ)

yn(ρ)
, (10)

Ξn(ρ) =
ξ′n(ρ)

ξn(ρ)
= −n

ρ
+
h

(1)
n−1(ρ)

h
(1)
n (ρ)

. (11)

The three logarithmic derivatives are similar in order of magnitude and are usually close to

unity for large arguments. Numerically, this has the advantage that it eliminates the risk of an

underflow or overflow error when comparing terms that are of different orders of magnitude.47

After some manipulation, the derivative of Eq. 8 reduces to a relatively simple expression when

compared to what is obtained when Eq. 7 is differentiated. The latter requires expanding the

derivatives of the spherical Bessel functions using the recurrence relations46

(2n+ 1)f ′n(ρ) = nfn−1(ρ) − (n+ 1)fn+1(ρ), (12)

(2n+ 1)f ′′n(ρ) = nf ′n−1(ρ) − (n+ 1)f ′n+1(ρ), (13)
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where fn is either jn, yn, or h
(1)
n . The number of terms needed to express the resonance

equation and its derivative by directly applying the recurrence relations given in Eqs. 12 and

13 is significantly larger than the approach of recasting the resonance condition in terms of

the logarithmic derivatives. Indeed, we have found that the logarithmic derivative approach is

faster by about a factor of two when compared to the spherical Bessel function approach. In

Appendix B, we provide expressions for the partial derivative of Eq. 8 with respect to both z1

and z2.

For a given m1, m2, r, n, and polarization, the core-shell resonance condition has an infinite

number of solutions that correspond to different mode orders, l. Identifying the correct l for

any one of these solutions is not trivial. Consequently, when applying the Newton-Raphson

method to solve the resonance condition, an initial guess that is fairly close to the actual

resonance for the desired mode order is required. In homogeneous spheres, this initial guess

comes from a well-known approximate explicit formula.33 As was discussed in the introduction,

the analogous formulas for core-shell particles are only valid under very restrictive conditions

and are unsuitable for most applications. One commonly used approach to determine core-shell

resonances for the m1, m2, r, n, l and polarization of interest with the Newton-Raphson method

is the following:27,41 First, calculate the resonant size parameter for a homogeneous sphere with

a refractive index m1. This is straightforward24 and serves as a suitable first guess when

applying the Newton-Raphson method to solve Eq. 8 for a very thin shell. Once the accurate

resonant size parameter of this thin shell system has been calculated it can subsequently be

used as a first guess when calculating the resonant size parameter of a slightly thicker shell

with the Newton-Raphson method. This iterative process can be continued until the desired r

is reached.
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While the above method allows for the accurate calculation of resonant size parameters in

core-shell particles, its major drawback is its slow speed. During testing, it was found that

the calculation of MDRs was the most significant bottleneck in the performance of our fitting

program. This motivated us to develop an alternative approach based around changing m2 in

small steps rather than changing r in small steps. The advantage of this approach is that MDRs

are approximately linear with m1 (Fig. 2b and e) and m2 (Fig. 2c and f) but not with r (Fig.

2a and d) for typical value ranges. This can be exploited in the root solving algorithm by using

a first-order Taylor series to yield initial guesses for unknown solutions. The step size of the

linear extrapolation when working with refractive index can be fairly coarse (∼ 10−2 refractive

index units).

Fig. 3 compares the time taken to compute the MDR position of the TE1
60 mode as a

function of r for a core-shell particle where m1 = 1.60 and m2 = 1.40 using the approach where

iterations in r are used and where iterations in m2 are used. The computation time increases

with shell thickness for the ratio method whereas the refractive index method is almost entirely

insensitive to the shell thickness. Beyond very thin shells, it can be seen the method of iterating

m2 is much faster than the method of iterating r.

4 Discussion

An algorithm based on the solution to the error minimization problem presented in Section

2 and the method for calculating resonances in Section 3 was implemented in a Fortran pro-

gram called MRSFIT. Similar to our previously developed fitting algorithm for homogeneous

spheres,24 the Fortran source code for MRSFIT will be made freely available.48 In this section,

the accuracy and applicability of the developed methodology is assessed using simulated modes
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sets for core-shell particles. Two cases were considered: (i) the core refractive index is greater

than the shell refractive index and (ii) the shell refractive index is greater than the core refrac-

tive index. The physically plausible wavelength-dependent refractive indices that were chosen

were polystyrene49 and water.50 At optical wavelengths, the refractive index of polystyrene is

always greater than that of water (e.g. at λ = 0.645 µm their refractive indices are 1.5864 and

1.3317, respectively).

Simulated modes sets were generated for r between 0.60 and 0.99 in steps of 0.01 by fixing

the outer radius of the core-shell particle at a2 = 5 µm. At each r, resonances located between

λ = 0.63 and 0.66 µm were retained for the final mode set. This was done for both (i) l = 1

and l = 2 and (ii) l = 2 and l = 3 modes. For each pair of modes orders, the process resulted

in 40 sets of modes for both m1 > m2 and m2 > m1. Each set would typically have about 12

modes for the chosen wavelength range. Gaussian noise with a deviation, σg, was then added

to these noise-free mode sets and the resulting noisy mode sets were fitted using MRSFIT with

a one-dimensional search from r = 0.50 to 1.00 in steps of 0.0001. Both the core and shell

refractive index were fitted with three term Cauchy expressions (K1 = 2 and K2 = 2). The

fitting process was repeated at each r with 20 different noisy sets in order to assess the accuracy

and uncertainty of fitting core-shell resonances.

Fig. 4 shows the ratio of best-fit, rbest-fit, as a function of the true ratio, rtrue. The values of

σg applied to the mode sets were (a and b) 10−6 µm, (c and d) 10−5 µm, or (e and f) 10−4 µm.

A typical uncertainty in the position of experimentally measured resonances is ±10−5 µm,51

so the chosen values of σg should be indicative of this figure of merit and values well above

and well below it. In Fig. 4, we see that when fitting peak positions with typical experimental

uncertainties, the value of rbest-fit is accurate until the shell becomes fairly thick (rtrue < 0.75).
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We also see that the best-fits for the l = 1 and l = 2 sets become inaccurate at larger rtrue than

the best-fits for the l = 2 and l = 3 sets. Both of these results were anticipated: Once the shell

becomes too thick, the resonance positions cease to significantly shift with decreasing r and are

no longer a sensitive probe of shell thickness. Fig. 2a and d show examples of this for l = 2

modes where a plateau occurs for r < 0.80 in the case of m2 > m1 and r < 0.75 for m1 > m2.

This plateau will occur at smaller r for increasing l as the peak mode energy will be located

further from the outer surface of the shell (see Ref. 27 for further examples). Consequently,

higher mode orders can probe thicker shells. Of course, when measuring optical spectra, MDR

linewidth determines which resonances can be observed so one is not simply free to measure

higher mode orders when attempting to characterize thicker shells.

Fig. 5 shows the refractive index of both the core and shell at a fixed wavelength as plotted

as a function of rtrue. The chosen wavelength was λ = 0.645 µm (the midpoint of the wavelength

range used to select MDRs to be fitted). The explanation for the accuracy of the best-fits in

Fig. 5 is similar to that given above for Fig. 4. However, it is interesting to note that for

thick shells the best-fit for the shell refractive index can still be accurate despite the fact that

the corresponding best-fit for r in Fig. 4 is inaccurate (e.g. compare Fig. 5e and f to Fig. 4c

and d for rtrue < 0.70). The reason being that the best-fit is essentially that of a homogeneous

sphere with the shell refractive index. Also of note, is that when m1 > m2, the accuracy of

the best-fits are much worse for thin shells (rtrue > 0.95) than when m2 > m1. For instance,

compare Fig. 5e and g to Fig. 5f and h. In the thin shell limit, MDRs are much less sensitive

to the core and shell refractive indices when m1 > m2 and this yields poor best-fits. Similar

observations have been reported previously for very thin shells (r > 0.99).36

In Figs. 6 and 7 the wavelength-dependent refractive index is plotted for rtrue = 0.90 and
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0.80, respectively. Because the range of MDRs chosen when generating the simulated sets was

between λ = 0.63 and 0.66 µm, the uncertainty in the refractive index calculated with the

parameters of best-fit increases greatly further away from this spectral window. This becomes

more severe with increasing Gaussian noise. However, within the neighborhood of the window

containing MDRs, the retrieved refractive index is in good agreement with the true value when

the Gaussian noise is σg = 10−5 µm or less. The one exception is the best-fit for m2 when l = 1

and 2, rtrue = 0.90, and m1 > m2 when σg = 10−6 µm (Fig. 6a). However, for a realistic noise

level (σg = 10−5 µm, Fig. 6e) the accuracy of the best-fit is comparable to the other m2 best-fits

for m1 > m2. Note that decreasing the number of refractive index parameters from three to

two (results not shown here) did not have any significant effect on the retrieved best-fits. As a

further point of comparison, we provide the wavelength-dependent refractive index of best-fit

for a homogeneous sphere in Fig. 8. Not only do the results for the homogeneous sphere always

produce accurate results, but the uncertainty outside of the window containing MDR peaks is

always as good or better than the lowest uncertainty in the core-shell best-fits.

In Fig. 9, the sum of the squared difference, S, divided by the number of modes, J , for

the best-fit is plotted as a function of r for the set of MDRs where rtrue = 0.90 and 0.80.

These types of one-dimensional calculations are used by MRSFIT to identify rbest-fit and the

parameters of best-fit that are associated with that minimum in S/J (as was discussed in

Section 2). In the plots, the depth of the minima become shallower with increasing Gaussian

noise and at σg = 10−4 µm cannot be identified on the log plot (either due to being very shallow

or disappearing completely). In the previous paragraph we discussed the inaccurate best-fit for

the case where rtrue, m1 > m2, and l = 1 and 2 when σg = 10−6 µm. In Fig. 9a we see that, for

all noise levels, there is no minimum within the plotted range of r. However, the minima are
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actually all fairly close to the true value of r. For instance, for σg = 10−6 µm, the minimum is

located at r = 0.8978. The consequence of this seemingly small deviation from the true value is

the previously mentioned inaccuracy in the best-fit for the shell refractive index (Fig. 6a). In

contrast, the core refractive index is very close to its true value within the chosen MDR range

(Fig. 6c). The main result from Fig. 9 concerns the required step size in r that should be used

with MRSFIT. Steps in r of 0.0001 are fine enough to correctly identify the location of global

minima in S/J for typical experimental uncertainties of ±10−5 µm.

Next, we consider MDR sets that contain only a single mode order. Sets where l = 1, 2,

or 3 were generated using the same procedure outlined above. However, the wavelength range

over which MDRs were retained was set from λ = 0.615 to 0.675 µm in order to ensure that

the number of modes in each set was usually around 12 (similar in number to that of the

multiple mode order sets). Fig. 10 shows the best-fits from MRSFIT for these single mode

order sets when σg = 10−6 µm. Despite the small value of σg, the accuracy of the best-fits is

very poor. This result is surprising as fitting MDR sets that contain only a single mode order

is routine for homogeneous spheres and is known to yield accurate fits.24 Reducing the noise

further on the single mode order sets will eventually lead to accurate fits, so we can conclude

that best-fits from MDR sets that contain only a single mode order are much more sensitive to

uncertainty in measured peak positions than sets with multiple mode orders. Unfortunately, the

required uncertainty (σg < 10−6 µm) is well below that which is currently achievable through

conventional spectroscopic methods. Therefore, for MDR sets with only a single mode order,

accurate fits for core-shell particles are unlikely to be realizable unless the parameter space is

restricted in some way (e.g. one or more of the parameters are known beforehand).

Finally, we examine how incorrect mode assignments affect the fitting of MDR sets. Fig. 11
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shows the effect that systematically offsetting the mode number from a correct mode assignment

has on the parameters of best-fit. In Fig. 11a and b, the incorrect assignment has relatively

little impact on rbest-fit except across the smaller values of rtrue that are plotted. In contrast,

Fig. 11c and d shows that the outer radius fit is biased for nearly all values of rtrue (and that

the inaccuracy becomes greater as the mode number offset increases). This bias extends to the

fitted values of the core refractive index (Fig. 11e and f) and the shell refractive index (Fig.

11g and h). The result of greatest interest, though, is how S/J changes with the mode offset.

Fig. 11i and j show S/J as a function of rtrue. For m2 > m1 (Fig. 11j), S/J for the correct

mode assignment is lower than almost all of the incorrect mode assignments. However, for the

case where m1 > m2 (Fig. 11i), this is not the case as incorrect mode assignments often yield

S/J lower than the correct mode assignment. The implication of this result is that one should

not always assume that the mode assignment that gives the lowest S/J is the correct mode

assignment. This may cause inaccuracies if the mode assignment is not known beforehand and

several reasonable possibilities are being considered during the fitting process. For the cases

studied here, this appears to be a more significant issue when m1 > m2.

5 Conclusion

We have thoroughly examined the problem of characterizing the size and composition of a

core-shell particle using measured MDR positions. For our analysis we utilized a new fitting

algorithm that was based on solving a least squares problem. Simultaneously, to rapidly calcu-

late MDR positions, we developed a new scheme based around iterating shell refractive index

rather than shell thickness. The Fortran implementation of our fitting algorithm, a program

called MRSFIT, will be made freely available.48 Fitting MDR sets with typical experimental

15



uncertainties showed that accurate fits for both the size and refractive index of the core and

shell could be found with MRSFIT although there were exceptions; the most notable one being

that MDR sets with only one mode order did not yield good best-fits. For the search parameters

used here, MRSFIT could complete the fitting process for a single MDR set in well under an

hour on an Intel Xeon CPU E5-1620 v4 at 3.50 GHz. If the same MDR set was fitted using

a grid search across the same parameter space it would require searching an eight-dimensional

grid and would not be feasible without greatly restricting the search space (see Ref. 38 for an

example of the severe restrictions that were necessary to perform a grid search when fitting

core-shell MDRs). This is different than the situation with homogeneous spheres where grid

searches are in fact feasible (although they are still much slower than the least squares method).

Therefore, we anticipate that the program implemented here and the insights presented in our

discussion will be invaluable for high-precision spectroscopic studies of core-shell particles.
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A Appendix

Inserting Eq. 4 and 5 into Eq. 2 and setting the partial derivative of S with respect to each

parameter to zero yields the following set of equations:

∂S

∂a2

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
pjm1j + qjm2j + bj

2πa2
2

)
= 0,

∂S

∂α10

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
− pj

2πa2

)
= 0,

∂S

∂α11

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
−
pjν

2
j

2πa2

)
= 0,

...

∂S

∂α1K1

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
−
pjν

2K1
j

2πa2

)
= 0,

∂S

∂α20

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
− qj

2πa2

)
= 0,

∂S

∂α21

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
−
qjν

2
j

2πa2

)
= 0,

...

∂S

∂α2K2

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
−
qjν

2K2
j

2πa2

)
= 0,

(A1)

The equations generated from ∂S/∂αnk are linear and the equation generated from ∂S/∂a2

can also be simplified to a linear equation by using the method from Ref. 24. This yields

∂S

∂a2

= 2
∑
j

(
νj −

pjm1j + qjm2j + bj
2πa2

)(
bj

2πa2
2

)
= 0. (A2)
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With this result, system A1 can now be written as the following set of linear equations:∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) bj = 0,

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) pj = 0,

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) pjν
2
j = 0,

...

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) pjν
2K1
j = 0,

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) qj = 0,

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) qjν
2
j = 0,

...

∑
j

(2πa2νj − (pjm1j + qjm2j + bj)) qjν
2K2
j = 0.

(A3)

After some further manipulation, system A3 can be more compactly written as Eq. 6.

B Appendix

Here we provide expressions for the partial derivatives ∂f/∂z1 and ∂f/∂z2 that we use in our

Newton-Raphson algorithm. First, however, we note that Eq. 8 is more stable if we multiply

both sides by the denominators to yield

ψn(m2z1)
[
Ψ̃n(m1z1) − wΨn(m2z1)

]
χn(m2z2)

[
Ξ̃n(z2) − vXn(m2z2)

]
− ψn(m2z2)

[
Ξ̃n(z2) − vΨn(m2z2)

]
χn(m2z1)

[
Ψ̃n(m1z1) − wXn(m2z1)

]
= 0, (B1)

where we have now introduced Ψ̃n = m1Ψn/m2 and Ξ̃n = Ξn/m2.
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The Riccati-Bessel functions, denoted as ω, are solutions to the Riccati differential equa-

tion:52

ρ2ω′′n(ρ) + [ρ2 − n(n+ 1)]ωn(ρ) = 0. (B2)

We define Ωn(ρ) = ω′n(ρ)/ωn(ρ), so that the derivative of Ωn(ρ) is

Ω′n(ρ) =
ω′′n(ρ)

ωn(ρ)
− ω′n(ρ)2

ωn(ρ)2
. (B3)

Using Eq. B2 and the definition of Ωn(ρ) gives

Ω′n(ρ) =
n(n+ 1)

ρ2
− Ω2

n(ρ) − 1. (B4)

One last result is helpful. Consider the derivative of one of the four terms in Eq. B1, e.g. the

term

ψn(m2z1)
[
Ψ̃n(m1z1) − wΨn(m2z1)

]
, (B5)

whose derivative with respect to z1 is

ψn(m2z1)

[
[m1Ψ̃′n(m1z1) − wm2Ψ′n(m2z1)] +m2

ψ′n(m2z1)

ψn(m2z1)
[Ψ̃n(m1z1) − wΨn(m2z1)]

]
. (B6)

If we substitute Ψn(m2z1) = ψ′n(m2z1)/ψn(m2z1) and Eq. B4 into Eq. B6 we get

m2ψn(m2z1)

[
Ψ̃n(m1z1)(Ψn(m2z1) − Ψ̃n(m1z1)) + (1 − w)

n(n+ 1)

(m2z1)2
+ w − m2

1

m2
2

]
. (B7)

Similar substitutions can be made to simplify the derivatives of the other terms in Eq. B1.

It is worthwhile to note here that (1 − w)n(n + 1)/(m2z1)2 = 0 for TE polarization while

w−m2
1/m

2
2 = 0 for TM polarization. Because the four terms in Eq. B1 are similar in form, we
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can subsequently write down the partial derivatives of f with respect to z1 and z2 as

∂f

∂z1

= m2ψn(m2z1)
[
Ψ̃n(m1z1)(Ψn(m2z1) − Ψ̃n(m1z1)) + Aw

]
× χn(m2z2)

[
Ξ̃n(z2) − vXn(m2z2)

]
− ψn(m2z2)

[
Ξ̃n(z2) − vΨn(m2z2)

]
×m2χn(m2z1)

[
Ψ̃n(m1z1)(Xn(m2z1) − Ψ̃n(m1z1)) + Aw

]
, (B8)

∂f

∂z2

= m2χn(m2z2)
[
Ξ̃n(z2)(Xn(m2z2) − Ξ̃n(z2)) +Bv

]
× ψn(m2z1)

[
Ψ̃n(m1z1) − wΨn(m2z1)

]
− χn(m2z1)

[
Ψ̃n(m1z1) − wXn(m2z1)

]
×m2ψn(m2z2)

[
Ξ̃n(z2)(Ψn(m2z2) − Ξ̃n(z2)) +Bv

]
, (B9)

whereAw = (1−w)n(n+1)/(m2z1)2+(w−m2
1/m

2
2) andBv = (1−v)n(n+1)/(m2z2)2+(v−1/m2

2).

C Appendix

In this Appendix we give expressions for pj, qj, and bj that are used in the implementation

of our fitting algorithm. The partial derivative of the resonant size parameter as a function

of the core or shell refractive index can be found by considering the left-hand side of Eq. B1,

denoted for brevity as f here, and its differential

df =
∂f

∂m1

dm1 +
∂f

∂m2

dm2 +

(
r
∂f

∂z1

+
∂f

∂z2

)
dz2, (C1)

where we have made use of dz1 = rdz2. When perturbing either m1 or m2 for a fixed r, it must

be true that the change in z1 and z2 satisfy df = 0. This gives the following expression

dz2

dms

= − ∂f

∂ms

(
r
∂f

∂z1

+
∂f

∂z2

)−1

, (C2)

where s is either 1 or 2. This chain rule gives the partial derivative of the resonant size

parameter z2 as a function of m1 and m2, the results of which can be used to determine pj and

20



qj. The partial derivatives ∂f/∂z1, ∂f/∂z2 were already given in Appendix B (Eq. B8 and

B9). Therefore, we only require expressions for ∂f/∂ms here. The procedure is similar to that

outlined in Appendix B, with the added complexity that v and w can depend on m1 and m2

for the TM polarization (as v = 1/m2
2 and w = m2

1/m
2
2). The partial derivative with respect to

m1 is

(
∂f

∂m1

)
TM

=
ψn(m2z1)

m1

[Ψ̃n(m1z1)(1 −m2z1Ψ̃n(m1z1)) +
n(n+ 1)

m2z1

− m2
1z1

m2

− 2wΨn(m2z1)]

× χn(m2z2)[Ξ̃n(z2) − vXn(m2z2)] − ψn(m2z2)[Ξ̃n(z2) − vΨn(m2z2)]

× χn(m2z1)

m1

[Ψ̃n(m1z1)(1 −m2z1Ψ̃n(m1z1)) +
n(n+ 1)

m2z1

− m2
1z1

m2

− 2wXn(m2z1)].

(C3)

The analogous expression for the TE polarization can be found by recognizing that the terms

2wΨn(m2z1) and 2wXn(m2z1) in Eq. C3 would be zero in that case. The equation for the

partial derivative with respect to m2 is more lengthy. It is

(
∂f

∂m2

)
TM

=
ψn(m2z1)

m2

[Ψ̃n(m1z1)(m2z1Ψn(m2z1)− 1) +w(2Ψn(m2z1) + (m2z1)− n(n+ 1)

m2z1

)]

× χn(m2z2)[Ξn(z2) − vXn(m2z2)] + ψn(m2z1)[Ψn(m1z1) − qΨn(m2z1)]

× χn(m2z2)

m2

[Ξ̃n(z2)(m2z2Xn(m2z2) − 1) + v(2Xn(m2z2) + (m2z2) − n(n+ 1)

m2z2

)]

− ψn(m2z2)

m2

[Ξ̃n(z2)(m2z2Ψn(m2z2) − 1) + v(2Ψn(m2z2) + (m2z2) − n(n+ 1)

m2z2

)]

× χn(m2z1)[Ψ̃n(m1z1) − wXn(m2z1)] − ψn(m2z2)[Ξ̃n(z2) − vΨn(m2z2]

× χn(m2z1)

m2

[Ψ̃n(m1z1)(m2z1Xn(m2z1) − 1) + w(2Xn(m2z1) + (m2z1) − n(n+ 1)

m2z1

)]. (C4)

Again, an analogous expression for the TE polarization can be found by recognizing that the

terms 2Ψn(m2z1), 2Ψn(m2z2), 2Xn(m2z1), and 2Xn(m2z2) are zero in that case.
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In Section 2, we considered a set of J resonance positions. If z2 in the above analysis is

the size parameter for the jth resonance, z2j, then its real part will be x2j. Additionally, m1

and m2 at this resonance will be m1j and m2j, respectively. Then, the real part of the partial

derivatives in Eqs. C3 and C4 (and their analogous expressions for TE polarization) will be

equal to pj and qj, respectively. Once pj and qj are known at x2j, the linear intercept bj can

be quickly calculated using

bj = x2j − pjm1j − qjm2j. (C5)
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Figure 1: Illustration of the core-shell geometry discussed in this work (a spherical core with a

concentric spherical shell). The radius of the core is a1 and the radius of the shell is a2. The

refractive index of the core is m1 and the radius of the shell is m2.
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Figure 2: Second order MDR positions between size parameters 40 and 50 as a function of the

(a and d) ratio between the radius of the core and the radius of the shell, r, (b and e) core

refractive index, m1, and (c and f) shell refractive index, m2.
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Figure 3: Time required to calculate the MDR position of a TE1
60 mode as a function of the

ratio between the radius of the core and the radius of the shell, r. In this calculation, the core

refractive index, m1, was 1.60 and the shell refractive index, m2, was 1.40. See Section 3 for

a description of the algorithm that underlies the two methods that are being compared here.

Calculations were performed using an Intel Xeon CPU E5-1620 v4 at 3.50 GHz.
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Figure 4: The ratio of best-fit, rbest-fit, as a function of the true ratio, rtrue, determined by fitting

simulated sets of MDR positions using the MRSFIT algorithm. See Section 4 for a detailed

description of how the simulated MDR sets were generated. For panels on the left-hand side,

the core was polystyrene and the shell was water. For panels on the right-hand side, the core

was water and the shell was polystyrene. Best-fits for MDR sets containing either (i) first and

second order or (ii) second and third order modes are shown here. Gaussian noise, σg, of (a

and b) 10−6 µm, (c and d) 10−5 µm, or (e and f) 10−4 µm was applied to the MDR sets. The

standard deviation in rbest-fit is shown as a shaded region.
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Figure 5: The refractive index of best-fit at λ = 0.645 µm for both the core and shell as a

function of the true ratio, rtrue, determined by fitting simulated sets of MDR positions using

the MRSFIT algorithm. See Section 4 for a detailed description of how the simulated MDR

sets were generated. For panels on the left-hand side, the core was polystyrene and the shell

was water. For panels on the right-hand side, the core was water and the shell was polystyrene.

Best-fits for MDR sets containing either (i) first and second order or (ii) second and third order

modes are shown here. Gaussian noise, σg, of (a-d) 10−6 µm, (e-h) 10−5 µm, or (i-l) 10−4 µm

was applied to the MDR sets. The standard deviation in rbest-fit is shown as a shaded region.
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Figure 6: The wavelength-dependent refractive index of best-fit for both the core and shell

determined by fitting simulated sets of MDR positions using the MRSFIT algorithm. The true

ratio, rtrue, is 0.90. See Section 4 for a detailed description of how the simulated MDR sets

were generated. For panels on the left-hand side, the core was polystyrene and the shell was

water. For panels on the right-hand side, the core was water and the shell was polystyrene.

Best-fits for MDR sets containing either (i) first and second order or (ii) second and third order

modes are shown here. Gaussian noise, σg, of (a-d) 10−6 µm, (e-h) 10−5 µm, or (i-l) 10−4 µm

was applied to the MDR sets. The standard deviation in rbest-fit is shown as a shaded region.
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Figure 7: The wavelength-dependent refractive index of best-fit for both the core and shell

determined by fitting simulated sets of MDR positions using the MRSFIT algorithm. The true

ratio, rtrue, is 0.80. See Section 4 for a detailed description of how the simulated MDR sets

were generated. For panels on the left-hand side, the core was polystyrene and the shell was

water. For panels on the right-hand side, the core was water and the shell was polystyrene.

Best-fits for MDR sets containing either (i) first and second order or (ii) second and third order

modes are shown here. Gaussian noise, σg, of (a-d) 10−6 µm, (e-h) 10−5 µm, or (i-l) 10−4 µm

was applied to the MDR sets. The standard deviation in rbest-fit is shown as a shaded region.
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Figure 8: The wavelength-dependent refractive index of best-fit for a homogeneous sphere

determined by fitting simulated sets of MDR positions using the MRFIT algorithm. See Section

4 for a detailed description of how the simulated MDR sets were generated. For panels on

the left-hand side, the sphere was water. For panels on the right-hand side, the sphere was

polystyrene. Best-fits for MDR sets containing either (i) first and second order or (ii) second

and third order modes are shown here. Gaussian noise, σg, of (a and b) 10−6 µm, (c and d)

10−5 µm, or (e and f) 10−4 µm was applied to the MDR sets. The standard deviation in rbest-fit

is shown as a shaded region.
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Figure 9: The sum of squared difference, S, for the best-fit divided by the number of resonance

positions, J , being fitted as a function of the ratio, r. The Gaussian noise, σg, that was applied

to the MDR sets either (a, b, e, and f) first and second order or (c, d, h, and j) second and

third order modes was either 10−4 µm (light blue), 10−5 µm (dark blue), or 10−6 µm (red). or

panels on the left-hand side, the core was polystyrene and the shell was water. For panels on

the right-hand side, the core was water and the shell was polystyrene. Values of S/J shown

are the average from fitting 20 MDR sets with the same value of σg. The vertical dotted line

indicates the location of the true value of r.
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Figure 10: The ratio of best-fit, rbest-fit, as a function of the true ratio, rtrue, determined by

fitting simulated sets of MDR positions using the MRSFIT algorithm. See Section 4 for a

detailed description of how the simulated MDR sets were generated. For panels on the left-

hand side, the core was polystyrene and the shell was composed of water. For panels on the

right-hand side, the core was water and the shell was composed of polystyrene. Best-fits for

MDR sets containing either (i) first, (ii) second or (iii) third order modes are shown here. The

Gaussian noise, σg, that was applied to the MDR sets was 10−6 µm. The standard deviation

in rbest-fit is shown as a shaded region.
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Figure 11: The effect of mode assignment on the best-fit. Parameters of best-fit (a-h) and

S/J (i and j) as a function of of the true ratio, rtrue, determined by fitting simulated sets of

MDR positions using the MRSFIT algorithm. For panels on the left-hand side, the core was

polystyrene and the shell was composed of water. For panels on the right-hand side, the core

was water and the shell was composed of polystyrene. In each panel, five identical sets of MDR

positions were fitted. However, the mode assignment of each set was systematically offset by

adding either -2, -1, 0, 1, or 2 to the mode number, n, of the correct assignment (so an offset

of 0 is the correct assignment). The Gaussian noise, σg, that was applied to all of the MDR

sets was 10−5 µm. The refractive index of best-fit shown in (c-f) is calculated at λ = 0.645 µm.

The MDR sets considered here contained only l = 2 and l = 3 modes.
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